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Introduction

• Who am I?

• Security Engineer at Microsoft

• Worked on SQL Server 2000 SP3 and SP4

• Worked on SQL Server 2005

• Working in Exchange Hosted Services

• Why am I here?

• Talk about new vulnerabilities we encountered

• Talk about mitigation techniques



3

Agenda

• Best practices for constructing dynamic

TSQL

• Delimiting Identifiers and Character Strings

• SQL functions

• Truncation Issues

• SQL modification by truncation

• SQL injection by truncation

• Finding and Mitigating truncation issues
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Best practices for constructing dynamic

TSQL
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Delimiting database object names

• Use delimited Identifiers

• When reserved words are used for object names.

• When you are using characters that are not listed as

qualified identifiers

• Double quotes can be used to delimit identifiers based

on where QUOTED_IDENTIFIER is ON or OFF.

• Never use single quotes to delimit identifiers.

• Always use square brackets (‘[‘ and ‘]’) to delimit

identifiers.

• Double up all occurrences of right square brackets (])

in the object name.
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Create a table with name Employee”[]’!
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Delimiting character strings

• Double quotes can be used to delimit character

strings based on where QUOTED_IDENTIFIER is

OFF or ON.

• Always use single quotes to delimit character

strings.

• Double up all occurrences of single quotes in the

character strings.
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Insert the name Mystery”Man’[]!
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SQL Functions

• quotename()

• replace()
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quotename() function
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Delimiting object names with

quotename()
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Delimiting character strings with

quotename()
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quotename() function
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replace() Function
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replace() function cont…
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quotename() vs replace()

• QUOTENAME works for character strings of

length less than or equal to 128 characters.

• Use QUOTENAME for quoting all SQL object

names.

• Use REPLACE for character strings of lengths

greater than 128 characters.

• Quotename() = delimiter + replace() + delimiter

– Quotename(@var) = ‘[‘ + replace(@var,’]’,’]]’) + ‘]’

– Quotename(@var,’’’’) = ‘’’’ + replace(@var,’’’’,’’’’’’) + ‘’’’
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Dynamic SQL in Stored Procedures
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Lets fix it with quotename()
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Fix it with replace()
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Part 1: Key points

• Double up ] (right brackets) in SQL Identifiers and

delimit them with []s.

• Double up ‘s (single quotes) in character strings

and delimit them with single quotes.

• We can use quotename() or replace() to mitigate

SQL injections.

• The only difference between these functions is

that quotename() adds the beginning and ending

delimiters and in case of replace() we will need to

add them explicitly.
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Truncation Issues



22

What did we fix?
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SQL Modification by Truncation
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SQL Modification by Truncation
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Calculate the buffer lengths properly
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Avoid buffers if possible
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Avoid using dynamic SQL
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One more variant
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SQL Injection by truncation
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SQL Injection by truncation
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SQL Injection by truncation
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Calculate the buffers properly
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SQL modification by truncation
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Check for return values
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SQL Injection by truncation
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Check for return values
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Key points

• SQL modification is enabled by truncating the

command string.

• SQL injection is enabled by truncating the quoted

string.

• Truncation issues are not specific to PL/SQL

code.
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Affected Applications

• Applications written in TSQL and C/C++

• Web Applications

• Mid-tier Applications

• Backend Applications

• Tools and client applications

• Internal Maintenance Scripts.
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Finding SQL injections

• Identify the calls that execute dynamic SQL

• Review the construction of dynamic SQL

• Review the buffers used for the variables
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Mitigating SQL Injections by truncation

• If possible, call QUOTENAME() or REPLACE()

directly inside the dynamic Transact-SQL.

• Calculate the buffer lengths properly.

• Check the return values for truncation errors.



41

Resources

• http://msdn2.microsoft.com/en-

us/library/ms161953(SQL.90).aspx
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Questions ?

This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
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