
1

SQL Injections by truncation

Bala Neerumalla

Microsoft



2

Introduction

• Who am I?

• Security Engineer at Microsoft

• Worked on SQL Server 2000 SP3 and SP4

• Worked on SQL Server 2005

• Working in Exchange Hosted Services

• Why am I here?

• Talk about new vulnerabilities we encountered

• Talk about mitigation techniques



3

Agenda

• Best practices for constructing dynamic

TSQL

• Delimiting Identifiers and Character Strings

• SQL functions

• Truncation Issues

• SQL modification by truncation

• SQL injection by truncation

• Finding and Mitigating truncation issues



4

Best practices for constructing dynamic

TSQL



5

Delimiting database object names

• Use delimited Identifiers

• When reserved words are used for object names.

• When you are using characters that are not listed as

qualified identifiers

• Double quotes can be used to delimit identifiers based

on where QUOTED_IDENTIFIER is ON or OFF.

• Never use single quotes to delimit identifiers.

• Always use square brackets (‘[‘ and ‘]’) to delimit

identifiers.

• Double up all occurrences of right square brackets (])

in the object name.



6

Create a table with name Employee”[]’!



7

Delimiting character strings

• Double quotes can be used to delimit character

strings based on where QUOTED_IDENTIFIER is

OFF or ON.

• Always use single quotes to delimit character

strings.

• Double up all occurrences of single quotes in the

character strings.



8

Insert the name Mystery”Man’[]!



9

SQL Functions

• quotename()

• replace()



10

quotename() function



11

Delimiting object names with

quotename()



12

Delimiting character strings with

quotename()



13

quotename() function



14

replace() Function



15

replace() function cont…



16

quotename() vs replace()

• QUOTENAME works for character strings of

length less than or equal to 128 characters.

• Use QUOTENAME for quoting all SQL object

names.

• Use REPLACE for character strings of lengths

greater than 128 characters.

• Quotename() = delimiter + replace() + delimiter

– Quotename(@var) = ‘[‘ + replace(@var,’]’,’]]’) + ‘]’

– Quotename(@var,’’’’) = ‘’’’ + replace(@var,’’’’,’’’’’’) + ‘’’’



17

Dynamic SQL in Stored Procedures



18

Lets fix it with quotename()



19

Fix it with replace()



20

Part 1: Key points

• Double up ] (right brackets) in SQL Identifiers and

delimit them with []s.

• Double up ‘s (single quotes) in character strings

and delimit them with single quotes.

• We can use quotename() or replace() to mitigate

SQL injections.

• The only difference between these functions is

that quotename() adds the beginning and ending

delimiters and in case of replace() we will need to

add them explicitly.



21

Truncation Issues



22

What did we fix?



23

SQL Modification by Truncation



24

SQL Modification by Truncation



25

Calculate the buffer lengths properly



26

Avoid buffers if possible



27

Avoid using dynamic SQL



28

One more variant



29

SQL Injection by truncation



30

SQL Injection by truncation



31

SQL Injection by truncation



32

Calculate the buffers properly



33

SQL modification by truncation



34

Check for return values



35

SQL Injection by truncation



36

Check for return values



37

Key points

• SQL modification is enabled by truncating the

command string.

• SQL injection is enabled by truncating the quoted

string.

• Truncation issues are not specific to PL/SQL

code.



38

Affected Applications

• Applications written in TSQL and C/C++

• Web Applications

• Mid-tier Applications

• Backend Applications

• Tools and client applications

• Internal Maintenance Scripts.



39

Finding SQL injections

• Identify the calls that execute dynamic SQL

• Review the construction of dynamic SQL

• Review the buffers used for the variables



40

Mitigating SQL Injections by truncation

• If possible, call QUOTENAME() or REPLACE()

directly inside the dynamic Transact-SQL.

• Calculate the buffer lengths properly.

• Check the return values for truncation errors.



41

Resources

• http://msdn2.microsoft.com/en-

us/library/ms161953(SQL.90).aspx



42

Questions ?

This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



